

Modeling of Thermoelastic Stresses in Thermal Barrier Coatings

Sean P. Donegan and Anthony D. Rollett (PI) UCR/HBCU Review Meeting

June 12, 2013

High Resolution Modeling of Materials for High Temperature Service

- University Coal Research: Award Number: DE-FE0003840
- Vito Cedro, Program Manager
- PROJECT DELIVERABLES:
 - Identify algorithm for matching both grain and particle microstructures Implement and deliver software code for synthesis of digital microstructures from experimental images
 - Demonstrate that the Fast Fourier Transform (FFT) code can run as parallel (Message Passing Interface) code on a small cluster
 Demonstrate that the FFT code can run on a large computer cluster (at least 200 nodes)
 - Characterize a candidate refractory alloy system, build the synthetic microstructure for that alloy from experimental images, perform computer simulations of mechanical response and compare computer simulations with experimental data.
 - Write and submit final report and deliver kinetic database in electronic form suitable for use by other scientists and engineers. Final report will include documentation of the 3D FFT software and the complete code for generating the synthetic microstructures and performing the mechanical response simulations

Outline

Introduction

- Motivation
- Objectives

Background

- Thermoelastic Stress
- Thermal Barrier Coatings
- Materials Selection
- Synthetic Structure
- Creation

Analytical Techniques

- Thermoelastic FFT
- Extreme Value Analysis

Results

- Resolution Dependence
- Elastic Energy Density of Thermal Barrier Coatings
 - MAX Phase Bond Coats
 - Industry Standard Systems

Conclusions

Future Work

- Microstructure
- Generation
- Hot Spots in Relation to
- **Microstructural Features**

Introduction

- Metallic components in gas-turbine engines are exposed to ure. extreme levels of ter ure.
- Thermal barrier compon

Motivation

• Experimental assessment of TBC failure involves cycling the component until failure.

 Scaling prevents FEM simulations from utilizing large structures or limits them to 2D domains.

circular TBC test specimen

2D FEM mesh

E.A.G. Shillington and D.R. Clarke, Acta Materialia, vol. 47, pp. 1297-1305, 1999 A.M. Karlsson and A.G. Evans, Acta Materialia, vol. 49, pp. 1793-1804, 2001

Outline

Introduction

- Motivation
- Objectives

Background

- Thermoelastic Stress
- Thermal Barrier Coatings
- Materials Selection
- Synthetic Structure

Creation

Analytical Techniques

- Thermoelastic FFT
- Extreme Value Analysis

Results

- Resolution Dependence
- Elastic Energy Density of Thermal Barrier Coatings
 - MAX Phase Bond Coats
 - Industry Standard Systems

Conclusions

Future Work

- Microstructure
- Generation
- Hot Spots in Relation to

Microstructural Features

J. D. Eshelby, Proceedings of the Royal Society of London A, vol. 252, pp. 561-569, 1959

7

Eigenstrains resulting from thermal expansion:

Hooke's Law:

eigenstresses

Total Strain:

$$\epsilon(x) = \epsilon^e(x) + \epsilon^*(x)$$

Modified Hooke's Law:

$$\epsilon(x) = C^{-1}(x) : \sigma(x) + \epsilon^*(x)$$

eigenstresses

Eigenstresses resulting from thermal expansion:

$$\sigma(x) = C(x) : (\epsilon(x) - \epsilon^*(x)) = C(x) : \epsilon(x) + \Lambda(x)$$

$$\int_{\text{eigenstress}} c(x) + \sigma(x) = 0$$

TBC Failure

TGO

Microstructure, especially at the top BC/top coat interface, plays a crucial role in TBC failure. To better appreciate the role of microstructure, *DREAM.3D* is used to generate test microstructures.

DREAM.3D is a tool used to generate and analyze material microstructure. DREAM.3D can create a 3D microstructure from a set of statistical data.

Outline

Lin fine all i affi	
Introduction	

- Motivation
- Objectives

Background

- Thermoelastic Stress
- Thermal Barrier Coatings
- Materials Selection
- Synthetic Structure
- Creation

Analytical Techniques

- Thermoelastic FFT
- Extreme Value Analysis

Results

- Resolution Dependence
- Elastic Energy Density of Thermal Barrier Coatings
 - MAX Phase Bond Coats
 - Industry Standard Systems

Conclusions

Future Work

- Microstructure
- Generation
- Hot Spots in Relation to

Microstructural Features

- The FFT algorithm provides a computationally efficient way to determine discrete direct and indirect Fourier transforms.
- By re-casting PDEs in frequency space, convolution integrals (Green's function method) become local (tensor) products.
- Since all calculations are local save for the FFT, the method has the potential for NlogN scaling to large domain sizes.

 Full field solutions exists for both the thermoelastic (teFFT) and viscoplastic (vpFFT) cases; both versions

Thermoelastic FFT

We discretize microstructure as a 3D image, or equivalently as a 3D regular grid overlayed on a representative volume element (RVE).

Each point/*node* contains information about the present phase and crystallographic orientation.

The teFFT algorithm computes stress and strain at each node in the grid; no additional mesh is needed.

Due to the FFT, periodic boundary conditions are required, though buffer layers can be used at RVE boundaries

Thermoelastic FFT

(1)
$$\varepsilon(x) = C^{-1}(x): \sigma(x) + \varepsilon^*(x)$$
 stiffness tensor of
homogeneous solid
(2) $\sigma(x) = \sigma(x) + C^\circ : \varepsilon(x) - C^\circ : \varepsilon(x)$
 $\sigma(x) = C^\circ : \varepsilon(x) + (\sigma(x) - C^\circ : \varepsilon(x))$
 $\sigma(x) = C^\circ : \varepsilon(x) + \tau(x)$ perturbation in stress fie
(3) $\sigma_{ij,j} = 0$
 $C^\circ_{ijkl} u_{k,lj}(x) + \tau_{ij,j}(x) = 0$

periodic boundary conditions in RVI

$$\begin{aligned} & (4) \ C^{o}_{ijkl}G_{km,lj}(x-x') + \delta_{im}\delta(x-x') = 0 \\ & (5) \ \tilde{\epsilon}_{ij}(x) = sym(\int_{\mathbb{R}^{3}}G_{k,jl}(x-x')\tau_{kl}(x')dx') \Longrightarrow \tilde{\epsilon}_{ij} = \Gamma^{o}_{ijkl} * \tau_{kl} \\ & \implies fft(\epsilon_{ij} = \Gamma^{o}_{ijkl} * \tau_{kl}) \Longrightarrow \tilde{\epsilon}_{ij} = \tilde{\Gamma}^{o}_{ijkl} : \hat{\tau}_{kl} \end{aligned}$$

Notation	
Strain:	3
Stress:	σ
Stiffness:	С
Perturbation Stress	S: T
Displacement:	u
Green's function: (G
Xformed Green's:	Г

R.A. Fisher and L.H.C. Tippett, Mathematical Proceedings of the Cambridge Philosophical Society, vol. 24, pp. 180-190, 1927 J. Pickands, Annals of Statistics, vol. 3, pp. 119-131, 1975

Extreme Value Analysis

$$G_{\mathfrak{G},\mathfrak{g},\mathfrak{g},\mathfrak{g}}(x) \xrightarrow{\xi} \left\{ \begin{array}{c} 1 \stackrel{1}{-} \left(1 \stackrel{\xi}{+} \frac{\xi(x(\tau)\mu)}{\sigma} \right) \stackrel{-\frac{1}{\xi}}{\mu} \\ 1 \stackrel{\tau}{-} \left(1 \stackrel{\xi}{+} \frac{\xi(x(\tau)\mu)}{\sigma} \right) \stackrel{-\frac{1}{\xi}}{\mu} \right) \begin{array}{c} (-\frac{1}{\xi} \stackrel{-}{-} 1) \\ \text{if } \xi \neq 0 \\ 1 \stackrel{\tau}{-} \left(1 \stackrel{\chi}{+} \frac{\xi(x(\tau)\mu)}{\sigma} \right) \stackrel{-\frac{1}{\xi}}{\mu} \\ \text{if } \xi = 0 \end{array} \right\}$$

Outline

Introduction Motivation Objectives 	Results Resolution Dependence Elastic Energy Density of Thermal Barrier Coatings
Background	 MAX Phase BCs Industry Standard Systems
 Thermoelastic Stress Thermal Barrier Coatings Materials Selection Synthetic Structure 	Conclusions
	Future Work
Analytical Techniques Thermoelastic FFT Extreme Value Analysis 	 Microstructure Generation Hot Spots in Relation to Microstructural Features

MAX Phase BCs

 $M_{n+1}AX_n$ (MAX) phases are ternary hexagonal compounds composed of an early transition metal (M), an A group element (A), and either carbon or nitrogen (X).

	1A																	8A
	1		[M ele	ements													18
	1	2A	1	A ele	ments								ЗA	4A	5A	6A	7A	2
1	Н	2	. î	X ele	ments								13	14	15	16	17	He
	3	4		_				1	5	6	7	8	9	10				
2	Li	Be											в	С	N	ο	F	Ne
_	11	12	ЗB	4B	5B	6B	7B		- 8B		1B	2B	13	14	15	16	17	18
3	Na	Mg	3	4	5	6	7	8	9	10	11	12	AI	Si	Р	S	CI	Ar
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
4	κ	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
-	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
5	Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
	55	56	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
6	Cs	Ba	Lu	Hf	Та	w	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
	87	88	103	104	105	106	107	108	109	110	111	112	113	114	115	116		
1	Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg							
			\bigwedge			1.00					- A Abu					,		
			\backslash	57	58	59	60	61	62	63	64	65	66	67	68	69	70	
				La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	
			\setminus	89	90	91	92	93	94	95	96	97	98	99	100	101	102	
			\backslash	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	

MAX Phase BCs

DEPARTMENT OF MATERIALS SCIENCE AND ENGINEERING INDUSTRY Standard Systems

periodic structure

industry standard

TBCs used in industry display roughened interfaces either due to deposition technique or cyclic BC creep. A Potts model grain growth approach was used to locally roughen grains near the interfaces.

MATERIALS SCIENCE AND ENGINEERING INDUSTRY Standard Systems

Outline

Introduction

- Motivation
- Objectives

Background

- Thermoelastic Stress
- Thermal Barrier Coatings
- Materials Selection
- Synthetic Structure
- Creation

Analytical Techniques

- Thermoelastic FFT
- Extreme Value Analysis

Results

- Resolution Dependence
- Elastic Energy Density of Thermal Barrier Coatings
 - MAX Phase BCs
 - Industry Standard Systems

Conclusions

Future Work

- Microstructure
- Generation
- Hot Spots in Relation to

Microstructural Features

THANK YOU!

Supplemental Slides

Transformation of thermal expansion tensor:

$$\alpha_{ij}' = O\alpha_{ij}O^T$$

Thermal expansion tensors of various crystal symmetries:

$$\operatorname{cubic} = \begin{pmatrix} \alpha & 0 & 0 \\ 0 & \alpha & 0 \\ 0 & 0 & \alpha \end{pmatrix} \qquad \operatorname{hexagonal} \sim \operatorname{trigonal} = \begin{pmatrix} \alpha_{11} & 0 & 0 \\ 0 & \alpha_{11} & 0 \\ 0 & 0 & \alpha_{33} \end{pmatrix}$$

Stiffness Tensors

Symmetry of the stiffness tensor:

$$C_{ijkl} = C_{jikl} = C_{ijlk} = C_{jilk}$$

Stiffness tensor using Voigt notation:

$$\begin{pmatrix} \sigma_1 \\ \sigma_2 \\ \sigma_3 \\ \sigma_4 \\ \sigma_5 \\ \sigma_6 \end{pmatrix} = \begin{pmatrix} C_{11} & C_{12} & C_{13} & C_{14} & C_{15} & C_{16} \\ C_{21} & C_{22} & C_{23} & C_{24} & C_{25} & C_{26} \\ C_{31} & C_{32} & C_{33} & C_{34} & C_{35} & C_{36} \\ C_{41} & C_{42} & C_{43} & C_{44} & C_{45} & C_{46} \\ C_{51} & C_{52} & C_{53} & C_{54} & C_{55} & C_{56} \\ C_{61} & C_{62} & C_{63} & C_{64} & C_{65} & C_{66} \end{pmatrix} \begin{pmatrix} \epsilon_1 \\ \epsilon_2 \\ \epsilon_3 \\ \epsilon_4 \\ \epsilon_5 \\ \epsilon_6 \end{pmatrix}$$

Stiffness Tensors

cubic	=		$\begin{pmatrix} C_{11} \\ C_{12} \\ C_{12} \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$	$C_{12} \\ C_{11} \\ C_{12} \\ 0 \\ 0 \\ 0 \\ 0$	$C_{12} \\ C_{12} \\ C_{11} \\ 0 \\ 0 \\ 0 \\ 0$	$egin{array}{cccc} 0 & 0 \ 0 & 0 \ 0 & 0 \ C_{44} & 0 \ 0 & C_{44} \ 0 & 0 \ \end{array}$	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ C_{44} \end{array} $
hexagonal	=	$\begin{pmatrix} C_{11} & C_{12} & C_{12} & C_{13} &$	$egin{array}{cccc} & C_{12} & C_{13} & C_{14} & C_{14} & C_{14} & C_{14} $	$\begin{array}{cccc} 3 & 0 \\ 3 & 0 \\ 3 & 0 \\ & C_{44} \\ & 0 \\ & 0 \\ & 0 \end{array}$	$egin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ C_{44} \\ 0 \end{array}$	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ \frac{1}{2} (C_{11} - C_{11} - C_{11}) \end{array}$	$-C_{12})$
$\operatorname{trigonal}$	=	$ \begin{pmatrix} C_{11} & C_{12} \\ C_{12} & C_{11} \\ C_{13} & C_{13} \\ C_{14} & -C_{14} \\ 0 & 0 \\ 0 & 0 \end{pmatrix} $	$egin{array}{ccc} C_{13} & & \ C_{13} & & \ C_{33} & & \ 0 & \ 0 & & \ 0 & \ 0 & & \ 0 & \ 0 & & \ 0$	$C_{14} \\ -C_{14} \\ 0 \\ C_{44} \\ 0 \\ 0 \\ 0$	$egin{array}{c} 0 \\ 0 \\ 0 \\ C_{44} \\ C_{14} \end{array}$	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \frac{1}{2}(C_{11} - 0) \end{array}$	$-C_{12})$

Principal Stresses

The principal stresses are those stresses normal to planes whose normals are parallel to stress vectors with zero shear component. They are then the eigenvalues of the stress tensor, and the stress tensor can be rewritten:

$$\sigma_{ij} = \begin{pmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \\ 0 & 0 & \sigma_3 \end{pmatrix}$$

Thermal Barrier Coatings

YSZ Phase Diagrams

MAX Phase Unit Cell

*P*6₃/*mmc*

 $P 6_3/m 2/m 2/c$

6/*mmm* No. 194

1 x, y, z $2 \overline{y}, x - y, z$ $3 \overline{x} + y, \overline{x}, z$ 4 $\bar{x}, \bar{y}, \frac{1}{2} + z$ 5 $x - y, x, \frac{1}{2} + z$ 6 y, $\bar{x} + y$, $\frac{1}{2} + z$ 7 $\overline{y}, \overline{x}, z$ 8 \overline{x} + y, y, z 9 x, x - y, z10 y, x, $\frac{1}{2} + z$ 11 $x - y, \overline{y}, \frac{1}{2} + z$ 12 $\bar{x}, \bar{x} + y, \frac{1}{2} + z$ 13 $\overline{x}, \overline{y}, \overline{z}$ 14 y, \overline{x} + y, \overline{z} 15 $x - y, x, \overline{z}$ 16 x, y, $\frac{1}{2} - z$ 17 $\bar{x} + y, \bar{x}, \frac{1}{2} - z$ 18 $\overline{y}, x - y, \frac{1}{2} - z$ 19 y, x, \overline{z} 20 $x - y, \overline{y}, \overline{z}$ 21 $\overline{x}, \overline{x} + y, \overline{z}$ 22 $\bar{y}, \bar{x}, \frac{1}{2} - z$ 23 $\overline{x} + y, y, \frac{1}{2} - z$ 24 x, x - y, $\frac{1}{2} - z$

Extreme Value Analysis

Log-Normal Distribution

The log-normal distribution describes a random variable whose natural logarithm follows the normal distribution. The cumulative distribution function (cdf) of a log-normal distribution is:

$$F_{\mu,\sigma}(x) = \frac{1}{2} \operatorname{erfc} \left[-\frac{\ln(x) - \mu}{\sigma\sqrt{2}} \right] = \Phi \left[\frac{\ln(x) - \mu}{\sigma} \right]$$

⁴⁷ Fisher-Tippett-Gnedenko Theoren

Consider a set of random variables $X_1, X_2, X_3, ..., X_n$. Let $M_n = max(X_1, X_2, ..., X_n)$. Now suppose two normalizing constants $a_n > 0$ and b_n exist such that:

$$\lim_{n \to \infty} P\left(\frac{M_n - b_n}{a_n} \le x\right) = F(x)$$

According to the first theorem in extreme value theory, referred to as the Fisher-Tippett-Gnedenko theorem, F(x) must be a particular case of the generalized extreme value (GEV) distribution, defined as:

$$GEV(x) = \exp\left\{-\left(1+\xi\frac{x-\mu}{\sigma}\right)^{\frac{1}{\xi}}\right\}$$

48 DEFARTMENT OF MATERIALS SCIENCE AND ENGINEERING PICKANDS-Balkema-de Haan Theorem

The interest is in approximating F_u , the distribution function of X above the threshold u. F_u is defined as follows:

$$F_u(x) = P(X - u \le x \mid X > u) = \frac{F(u + x) - F(u)}{1 - F(u)}$$

Given an unknown underlying distribution function F, the conditional excess distribution, F_u , converges to the GPD as the threshold approaches the right endpoint of F. Alternatively:

$$F_u(x) \to G_{\xi,\sigma}(x)$$
 as $u \to \infty$

Threshold Choice Plots

The threshold choice plot shows how an increasing threshold affects the value of the scale (σ) and the shape (ξ) parameter. Consider a random variable X that is distributed as $G_{\xi 0,\mu 0,\sigma 0}$. The location parameter, μ_0 , is the same as the threshold call. Now allow another threshold, $\mu_1 > \mu_0$. The new random variable X | X > μ_1 is also described by the GPD. The updated parameters are $\sigma_1 = \sigma_0 + \xi_0(\mu_1 - \mu_0)$ and $\xi_1 = \xi_0$. Let $\sigma_* = \sigma_1 - \xi_1 \mu_1$.

In this new parameterization, σ_* is independent of μ_0 . Therefore, σ_* and ξ_1 are constant above μ_0 if μ_0 is a reasonable threshold choice. The threshold choice plot displays graphically σ_* and ξ_1 against a range of thresholds. Reasonable threshold choices occur where σ_* and ξ_1 remain constant. Confidence intervals are calculated using the profile likelihood method

Likelihood ratio statistic:

$$2\ln\left[\frac{L(\hat{\theta})}{L(\theta_0)}\right] \sim \chi^2$$

The 95% confidence interval for θ is then all values of θ_0 for which the following inequality holds:

$$2\ln\left[\frac{L(\hat{\theta})}{L(\theta_0)}\right] < \chi^2(0.95)$$

The mean residual life plot consists of the points:

$$\left\{ \left(\mu, \frac{1}{n_{\mu}} \sum_{i=1}^{n_{\mu}} x_i - \mu\right) : \mu \le x_{\max} \right\}$$

Since the empirical mean is assumed normally distributed by the central limit theorem, confidence intervals can also be plot- ted. The data are a good fit to the GPD where the mean residual life plot follows a straight line.

Return Periods

Return period related to the probability of non-exceedance:

$$T = \frac{1}{npy(1-p)}$$

Quantile function of the GPD:

$$G_{\xi,\mu,\sigma}^{-1}(p) - \mu + \frac{\sigma((1-p)^{-\xi} - 1)}{\xi}$$

Stress Equilibrium

Compatibility

For infinitesimal strains, compatibility is satisfied if the following equation holds:

$$\epsilon_{ij} = \frac{1}{2}(u_{i,j} + u_{j,i})$$

Compatibility ensures a unique strain field is obtainable from a particular displacement field. Conceptually, if a continuous body is thought to be divided into infinitesimal volumes, compatibility describes the necessary conditions under which the body deforms without developing gaps or overlaps between said volumes.

Modified Hooke's Law with incorporated eigentrains in reference to a homogeneous medium:

$$\sigma_{ij}(x) = C^o_{ijkl} : (\epsilon_{kl}(x) - \epsilon^*_{kl}(x)) + \tau_{ij}(x)$$

Application of stress equilibrium:

$$C_{ijkl}^o u_{k,lj}(x) + \tau_{ij,j}(x) = 0$$

Application of Green's function:

$$C_{ijkl}^{o}G_{km,lj}(x-x') + \delta_{im}\delta(x-x') = 0$$

Application of periodic Green's function to perturbation in stress field:

$$\tilde{u}_k = \int_V G_{ki}(x - x')\tau_{ij,j}(x')dx'$$

Application of compatibility:

$$\epsilon_{ij}(x) - E_{ij} + sym\left(\int_V G_{ik,jl}(x-x') au_{kl}(x')\mathrm{d}x'
ight)$$

Application of FFT:

$$C^o_{ijkl}\xi_l\xi_j\hat{G}_{km} = \delta_{im}$$

Periodic Green's function in frequency space:

$$\hat{\Gamma}^o_{ijkl} = -(\xi_p \xi_q C^o_{ipkq})^{-1} \xi_j \xi_l$$

Augmented Lagrangian

Non-linear response equation at each iteration:

$$\frac{\delta w}{\delta e}(x, e^i) + C^o : e^i(x) = C^o : \epsilon^i(x) + \lambda^{i-1}(x)$$

Non-linear strain field at each iteration:

$$\lambda^{i}(x) = \lambda^{i-1}(x) + C^{o} : (\epsilon^{i}(x) - e^{i}(x))$$

Initializations for teFFT

teFFT Algorithm

$$\begin{aligned} \tau^{i}(x) &= \lambda^{i-1}(x) - C^{o} : e^{i-1}(x) + C(x) : \epsilon^{*}(x) \\ \hat{\tau}^{i}(\xi) &= fft(\tau^{i}(x)) 2 \\ \epsilon^{i}(x) &= E^{i-1} + sym\left(fft^{-1}\left(\hat{\Gamma}^{o} : \hat{\tau}^{i}(\xi)\right)\right) 3 \\ \sigma^{i}(x) + C^{o} : (C^{-1}(x) : \sigma^{i}(x) + \epsilon^{*}(x)) = \lambda^{i-1}(x) + C^{o} : \epsilon^{i}(x) \\ \sigma^{i}(x) &= (I + C^{o} : C^{-1}(x))[\lambda^{i-1}(x) + C^{o} : (\epsilon^{i}(x) - \epsilon^{*}(x))] \\ e^{i}(x) &= C^{-1}(x)\sigma^{i}(x) + \epsilon^{*}(x) 5 \\ \lambda^{i}(x) &= \lambda^{i-1}(x) + C^{o} : (\epsilon^{i}(x) - e^{i}(x)) 6 \\ E^{i} &= \langle \epsilon^{i}(x) \rangle + C^{o^{-1}} : (\Sigma - \langle \sigma^{i}(x) \rangle) 7 \end{aligned}$$

teFFT Errors

Stress field errors:

$$\operatorname{err}[\lambda^{i}(x)] = \frac{\langle ||C^{o} : (\epsilon^{i}(x) - e^{i}(x))|| \rangle}{||\langle \sigma^{i}(x) \rangle||}$$

Strain field errors:

$$\operatorname{err}[e^{i}(x)] = \frac{\langle ||\epsilon^{i}(x) - e^{i}(x)|| \rangle}{E}$$

Analysis

Stiffness Coefficients

TBC Component	Material	C ₁₁	C ₁₂	C ₁₃	C ₁₄	C ₃₃	C ₄₄
Top Coat	YSZ	204	87	-	-	_	158
	NiCoCrAlY	49	-14.7	-	-	_	127.5
	Ti ₂ AlC	308	55	60	—	270	111
	Ti ₂ AlN	312	69	86	—	283	127
	Ti ₄ AlN ₃	405	94	102	-	361	160
	V_2 GeC	311	122	140	-	291	158
	Nb ₂ AlC	341	94	117	-	310	150
Bond Coat	Ti ₃ AlC ₂	361	75	70	-	299	124
	Ti ₂ SC	339	90	100	_	354	162
	Ti_3SiC_2	365	125	120	-	375	122
	Ti_3GeC_2	355	143	80	-	404	172
	V ₂ AlC	346	71	106	-	314	151
	V ₂ AsC	334	109	157	-	321	170
	Nb ₃ Si ₃	497	163	116	22	501	147
TGO	α -Al ₂ O ₃	497	163	116	22	501	147
Substrate	Nb-16.8 wt% Mo	271	133.4	-	-	-	29.47
Substrate	IN718	339.5	173.3	-	-	-	21.4

DREAM3D Statistics

Sample grain size distribution:

DREAM3D Statistics

Sample axis ODF pole figures:

♣

Stitching Procedure

MSE Resolution Dependence: POT Analysis

64³ structure

32³ structure

V₂GeC BC

MAX Phase BCs: Stress

Nb₂AIC BC

 Ti_3AIC_2BC

Stress

0.00469

0.004

0.002

-0.002

-0.003695

0

77

MAX Phase BCs: EED

Ti₂AIC BC

Ti₂AIN BC

V₂GeC BC

MAX Phase BCs: EED

 $Nb_2AIC BC$

 Ti_3AIC_2BC

Ti₃SiC₂BC

MAX Phase BCs: EED

 Ti_3GeC_2BC

V₂AIC BC

80

MATERIALS SCIENCE AND ENGINEERING MAX Phase BCs: Summary

BC Material	Maximum Principal Stress (GPa)	Maximum EED (GPa)
Ti ₂ AlC	0.8803	0.002861
Ti ₂ AlN	0.3951	0.0004414
Ti_4AlN_3	0.3199	0.0003257
V_2 GeC	1.693	0.01597
Nb_2AlC	0.5353	0.0007952
Ti_3AlC_2	0.8418	0.003232
Ti_2SC	0.4022	0.0004962
Ti_3SiC_2	0.4892	0.001646
$\mathrm{Ti}_{3}\mathrm{GeC}_{2}$	0.469	0.00177
V ₂ AlC	0.483	0.001412
V_2AsC	1.386	0.01005

MAX Phase BCs: Summary

EFARTMENT OF EFARTMENT OF EFARTMENT OF Industry Standard Systems: Stress

Periodic, flat

Industry Standard Systems: Stress NT OF LS SCIENCE AND ENGINEERING

RTMENT OF

Periodic, flat

DEPARTMENT OF MININGINEER INDUSTRY Standard Systems: POT Analysis

DEPARTMENT OF IND ENGINEER IND USTRY Standard Systems: POT Analysis

Industry, flat

"Harpy's Eagle, world's most vicious raptor ... "